Хотя визуальный анализ ценовых графиков позволяет оценить характерные периоды некоторых циклов, эта оценка является очень приблизительной. Более того, визуально трудно выделить комбинацию нескольких наложенных друг на друга периодических колебаний с разными периодами. Для точной количественной оценки присутствующих в изменениях цен колебаний в настоящее время чаще всего используют спектральный анализ. Метод спектрального анализа заключается в том, что наблюдаемая зависимость изменения исследуемой величины (в нашем случае — рыночных цен) от времени представляется в виде суммы гармонических колебаний с разными частотами. Вклады разных слагаемых данной суммы, как правило, различаются и определяются амплитудой колебаний на определенной частоте. Зависимость такой амплитуды от частоты составляющих гармонических колебаний называется спектром исследуемой временной функции (в нашем случае — функции цены от времени). Разложение исследуемых функций на гармонические составляющие и определение амплитуд этих составляющих требуют большого объема вычислений и проводятся с помощью компьютерных методов.
Если спектр, полученный в результате проведенного анализа, представляет собой горизонтальную прямую, значит, вклады всех частотных составляющих одинаковы. Исследуемая зависимость в этом случае называется белым шумом, в котором нельзя выделить никаких преимущественных колебаний. В том случае, если в полученном спектре некоторым частотам соответствуют существенно более высокие значения, чем соответствующие остальным частотам, можно утверждать, что у исследуемых данных есть циклическая волновая составляющая на данных частотах. Таким образом, пики частотного спектра изменений цен должны соответствовать частотам возможных временных циклов. Однако колебания с экстремальными спектральными значениями не всегда являются статистически значимыми, т.е., проявляясь в течение некоторого числа периодов, они далее могут не повторяться. Следовательно, эти возможные циклические составляющие необходимо подвергнуть соответствующей проверке.
При рассмотрении результатов спектрального анализа необходимо учитывать, что наличие в ценовых движениях трендовой составляющей влияет на форму получающихся спектров и это влияние может серьезно исказить результаты последующих проверок циклов на статистическую значимость. Поэтому, прежде чем приступать к подобным проверкам, из исследуемой зависимости необходимо попытаться удалить трендовую составляющую.
Для удаления из данных трендовой составляющей, или снятия направленности, используют, так же как и в случае удаления случайных колебаний, предполагаемый факт различия характерных периодов изменения трендов и циклов. Поскольку считается, что время трендового движения существенно превышает период предполагаемого цикла, то скользящая средняя с периодом усреднения, близким к периоду цикла, полностью устранит влияние цикличности и в наименьшей степени исказит форму тренда. Такая скользящая средняя отражает только трендовую зависимость, и ее вычитание из исходных данных должно привести к временному ряду, в котором тренд уже отсутствует. Предшествующий этому шагу спектральный анализ необходим для того, чтобы как можно более точно определить период усреднения скользящей средней, поскольку скользящие, усредненные по времени, существенно отличающемуся от времени цикла, будут значительно искажать этот цикл (рис. 6.4).
После проведенного таким образом «снятия» направленности, как правило, снова проводится спектральный анализ и фиксируются скорректированные значения частот возможных циклов.
Проверка статистической значимости циклов с частотами, выявленными при спектральном анализе, представляет четвертый этап циклического анализа. Целью статистической проверки возможного цикла является определение того, насколько случайным является зафиксированное проявление периодичности. Проверка статистической значимости циклов осуществляется стандартными методами математической статистики, и ее результатом, как правило, является величина вероятности случайности цикла. Чем ниже полученное в результате проверки значение, тем меньше вероятность того, что наблюдаемый цикл является случайным. В качестве примеров используемых статистических тестов чаще всего приводят тест Бартелса и тесты, связанные с вычислением F-коэффициента и величины χ2 .
Тест Бартелса сравнивает реальные ценовые ряды и гармоническую кривую с периодом, равным периоду вероятного цикла. Чем точнее совпадение этих двух зависимостей, тем выше считается статистическая надежность такого цикла.