мы можем получить вероятность события,





Подставляя полученные значения вместо Y и N'(Z) в уравнение (3.21), мы можем получить вероятность события, не превышающего +2 стандартных единицы:

N(Z) = 1 - N'(Z) * ((1,330274429 * Y^ 5) -
- (1,821255978 * Y^4) + (1,781477937 * Y^ 3) -
- (0,356563782 * Y ^ 2) + (0,31938153 * Y))
= 1-0,05399093525* ((1,330274429* 0,68339443311^5)-
- (1,821255978 * 0,68339443311 ^ 4 + 1,781477937 * 0,68339443311^ 3) - -
(0,356563782 * 0,68339443311 ^2) + 0,31938153 * 0,68339443311))
= 1 - 0,05399093525 * (1,330274429 * 0,1490587) -
- (1,821255978 * 0,2181151 + (1,781477937 * 0,3191643)-
- (0,356563782 * 0,467028 + 0,31938153 - 0,68339443311))
1- 0,05399093525 * (0,198288977 - 0,3972434298 + 0,5685841587 - 0,16652527+0,2182635596)
= 1 - 0,05399093525 * 0,4213679955 = 1 - 0,02275005216= 0,9772499478

Таким образом, можно ожидать, что 97,72% результатов в нормально распределенном случайном процессе не попадают за +2 стандартные единицы. Это изображено на рисунке 3-8.
Чтобы узнать, какова вероятность события, равного или превышающего заданное число стандартных единиц (в нашем случае +2), надо просто изменить уравнение (3.21) и не использовать условие «Если Z < 0, то N(Z) = 1 - N(Z)».
Поэтому вторая с конца строка в последнем расчете изменится с = 1 - 0,02275005216 на 0,02275005216
Таким образом, с вероятностью 2,275% событие в нормально распределенном случайном процессе будет равно или превышать +2 стандартные единицы. Это показано на рисунке 3-9.



Рисунок 3-8 Уравнение (3.21) для вероятности Z=+2


Содержание раздела