Прогнозирование финансового состояния 2


Предположение о линейности регрессии прямо вытекает из допущения, что прогнозируемый случайный процесс является стационарным, т.е. в каждом временном сечении этого процесса лежит случайная величина, вероятностное распределение которой содержит постоянные, неизменные во времени параметры.

Из этого же допущения о стационарности случайного процесса исходят все методы авторегрессии, когда прогнозируемое значение параметра линейным образом зависит от некоторой совокупности предыдущих значений параметров:

 

Y(t) = A0 + A1Y(t-1) + A2Y(t-2) + … + e (t).                                                                                              (1.2)

 

Авторегрессия свидетельствует об инерционности и стационарности прогнозируемого процесса, о сохранении на всем интервале прогнозирования исторически сложившейся экономической парадигмы. Однако это допущение является слишком сильным и малореалистичным. Чтобы смягчить эту предпосылку о стационарности, зарубежные исследователи Энгл и Боллерслев разработали семейство методов ARCH и GARCH соответственно, допуская, что прогнозируемый процесс перестает быть стационарным, но будущее значение волатильности этого процесса может быть предсказано по ряду предыдущих значений волатильности процесса (условно-непостоянная волатильность). Т.е. в алгоритме прогнозируется не только искомый параметр, но и параметры распределения ошибки прогноза.

Развитием методов ARCH и GARCH является технология так называемых нейронных сетей , когда система прогнозирования в автоматическом режиме осуществляет оценивание параметров регрессии, минимизируя функцию ошибки. Любопытно, что иногда для обучения финансовых нейронных сетей используются даже астрологические прогнозы  (в мире существует ряд финансовых программ на астрологическом базисе, и мы здесь обходим стороной вопрос о том, является ли астрология наукой или нет).

Методы ARCH и GARCH (равно как и построенные на их основе нейронные сети) перестают работать, когда исследуемая экономическая система терпит так называемый эпистемологический, парадигмальный разрыв , т.е., с резким изменением экономических тенденций вся накопленная история оказывается неподходящей для прогноза. Характерный пример – перелом тенденции фондового рынка США в 2001 году. И в этом случае для прогнозирования тенденций подсистемы необходимо пользоваться данными надсистемы, не претерпевшей парадигмального разрыва. Так, для прогнозирования американских фондовых индексов сегодня можно воспользоваться данными макроэкономических индексов и обновленными предположениями о рациональных инвестиционных тенденциях, используя идеологию треугольных нечетких функций  .