Глава 1   Глава 2



Выводы


 

Теория нечетких множеств открывает новые возможности для интерпретации наблюдений, полученных опытным путем, потому что дает исследователю основания для анализа неоднородных и недостаточных выборок, которые классическая теория вероятности законно игнорирует.

Появляется простор для великого компромисса, когда исходная «дурная» неопределенность начинает работать на правах неопределенности канонической, но в модели попадают нечеткости, которые выражают степень субъективной уверенности эксперта в своей правоте. Тем самым неопределенность проходит структуризацию, получая формально описанную границу, отделяющую нашу уверенность от неуверенности, знание от незнания. Законы, выраженные в нечеткой или нечетко-вероятностной форме, являют собой синтез объективных и субъективных моделей. Таким образом, активность эксперта не игнорируется, а приобретает модельные формы. 

Также надо отметить, что огромное количество вероятностных приложений в экономике опирается на наивные представления практиков о том, что их вероятностные гипотезы не требуют подтверждения правдоподобия. Если бы вопрос о подтверждении гипотез встал ребром и встал так, как это понимают классики математической статистики, то можно уверенно утверждать, что львиная доля вероятностных гипотез в экономике была бы забракована. Категория квазистатистики позволяет получить оценку правдоподобия в новом качестве, в новом смысле, с оттенком субъективного доверия эксперта к полученным им гипотезам.

Нечеткие знания, которые также здесь рассмотрены, являются инструментом для принятия инвестиционных решений. На этих знаниях могут быть организованы специализированные экспертные системы, реализующие механизм нечетко-логического вывода.