Существующие способы оценки 2


Минимаксные подходы ставят своей целью отказаться от учета неопределенности "весовым методом". То есть, когда оценивается некий ожидаемый интегральный эффект, его формула не представляет собой свертки единичных эффектов, когда в качестве весов такой свертки выступают экспертные оценки или вероятности реализации этих эффектов. Из всего поля допустимых реализаций (сценариев) минимаксные методы выбирают два, при которых эффект принимает последовательно максимальное или минимальное значение. При этом лицу, принимающему решения (ЛПР) ставится в обязанность отреагировать на ситуацию таким образом, чтобы добиться наилучших результатов в наихудших условиях. Считается, что такое поведение ЛПР является наиболее оптимальным.

Оппонируя минимаксным подходам, исследователи замечают, что ожидаемость наихудших сценариев может оказаться крайне низкой, и настраивать систему принятия решений на наихудший исход означает производить неоправданно высокие затраты и создавать необоснованные уровни всевозможных резервов. Компромиссным способом применять минимаксные подходы является использование метода Гурвица, когда два экстремальных сценария (наихудший и наилучший) учитываются совместно, а в качестве веса в свертке сценариев выступает параметр l, уровень которого задается ЛПР. Чем больше l, тем оптимистичнее настроено ЛПР. Модифицированный интервально-вероятностный метод Гурвица учитывает дополнительную информацию о соотношении вероятностей сценариев, с учетом того, что точное значение сценарных вероятностей неизвестно.

Поговорим теперь о теории нечетких множеств, заложенной в фундаментальной книге Лофти Заде . Первоначальным замыслом этой теории было построить функциональное соответствие между нечеткими лингвистическими описаниями (типа "высокий", "теплый" и т.д.) и специальными функциями, выражающими степень принадлежности значений измеряемых параметров (длины, температуры, веса и т.д.) упомянутым нечетким описаниям. Там же в  были введены так называемые лингвистические вероятности - вероятности, заданные не количественно, а при помощи нечетко-смысловой оценки.

Впоследствии диапазон применимости теории нечетких множеств существенно расширился. Сам Заде определил нечеткие множества как инструмент построения теории возможностей . С тех пор научные категории случайности и возможности, вероятности и ожидаемости получают тоеретическое разграничение.

Следующим достижением теории нечетких множеств является введение в обиход т.н. нечетких чисел как нечетких подмножеств специализированного вида, соответствующих высказываниям типа "значение переменной примерно равно а". С их введением оказалось возможным прогнозировать будущие значения параметров, которые ожидаемо меняются в установленном расчетном диапазоне. Вводится набор операций над нечеткими числами, которые сводятся к алгебраичесим операциям с обычными числами при задании определенного интервала достоверности (уровня принадлежности).

Прикладные результаты теории нечетких множеств не заставили себя ждать. Для примера: сегодня зарубежный рынок так называемых нечетких контроллеров (разновидность которых установлена даже в стиральных машинах широко рекламируемой марки LG) обладает емкостью в миллиарды долларов. Нечеткая логика, как модель человеческих мыслительных процессов, встроена в системы искусственного интеллекта и в автоматизированные средства поддержки принятия решений (в частности, в системы управления технологическими процессами).

Начиная с конца 70-х годов, методы теории нечетких множеств начинают применяться в экономике. Отметим здесь монографию , в которой представлен широкий спектр возможных применений этой теории - от оценки эффективности инвестиций до кадровых решений и замен оборудования, приводятся соответствующие математические модели.

Позволю себе высказать мнение относительно перспектив применения теории вероятностей и теории нечетких множеств в экономических задачах.