Отношения Фибоначчи в геометрии 3





Частное от деления длины на высоту прямоугольника ABCD на рисунке 1.6 можно вычислить. Как мы узнали ранее, оно соста­вляет АВ-г-ВС = ФИ-Н = 1,618. Через точку Е, также называемую золотым сечением АВ, проводится линия EF, перпендикулярная АВ, отрезающая от прямоугольника квадрат AEFD. Остающийся прямоугольник EBCF — золотой прямоугольник. Если отделить квадрат EBGH, то остающаяся фигура HGCF также будет золо­тым прямоугольником. Этот процесс можно повторять неопреде­ленно долго, пока конечный прямоугольник О не станет настоль­ко маленьким, что будет неотличим от точки.
Конечная точка О называется полюсом равноугольной спира­ли, которая проходит через золотые сечения D, Е, G, J и так далее.



Рисунок 1.5 ФИ-спираль, представленная в раковине наутилуса.


D F J С
Рисунок 1.6 Геометрия ФИ-спирали. Источник: FAM Research, 2000.

Стороны прямоугольника почти, но не полностью касательные кривой.
Отношение ФИ-спирали кряду Фибоначчи очевидно из рисун­ка 1.6, потому что ФИ-спираль проходит по диагонали через про­тивоположные углы последовательных квадратов, например, DE, EG, GJ и так далее. Длины сторон этих квадратов формируют ряд Фибоначчи. Если самый маленький квадрат имеет сторону длиной d, смежный квадрат должен также иметь сторону длиной d. Следу­ющий квадрат имеет сторону длиной 2d (вдвое длиннее d), следу­ющий 3d (втрое длиннее d), формируя ряд Id, 2d, 3d, 5d, 8d, 13d... который является хорошо известной последовательностью Фибо­наччи: 1—1—2—3—5—8—3— и так далее до бесконечности.
Спираль не имеет конечной точки. При бесконечном росте на­ружу (или внутрь) ее форма остается неизменной. Два сегмента спирали идентичны по форме, но отличаются по размеру точно на коэффициент ФИ. Все спирали, чьи темпы роста являются элемен­тами ряда ФИ 0,618-1,000-1,618-2,618-4,236-6,854-11,090-и так далее, будут в контексте этой книги называться ФИ-спира-лями.
ФИ-спираль — связующее звено между рядом суммирования Фибоначчи, вытекающим из него отношением Фибоначчи ФИ, и волшебством природы, которое мы видим вокруг нас.