Затем она довольно резко (примерно в 1,5 раза) снизилась. После достижения этого состояния пирамида была убрана.
Однако эффект замедления скорости не только не исчез сразу, а более того, в очередном наборе (точка 5) произошло дополнительное снижение скорости отставания. И только после этого произошла релаксация эффекта, то есть скорость возросла примерно до исходного уровня (точки 6-9).
Таким образом, если ,замедление хода часов (точки 4, 5) - есть результат влияния эффекта формы пирамиды, то следует признать, что в данном случае он имеет стадию накопления (период индукции - точки 1, 2, 3) и стадию последействия (точки 5, 6), в которой эффект сохраняется некоторое время (порядка 10 дней) и после того, как пирамида убрана. Следует специально оговорить, что, конечно, по результатам этого единичного эксперимента мы не можем однозначно связать полученную зависимость именно с действием эффекта формы. Нельзя исключить чисто случайного (флуктуационного) характера пика на 1 вследствие действия каких-то внутренних или внешних факторов.
Для того чтобы истолкование полученных данных было более определенным, следовало бы проделать этот эксперимент еще несколько раз с этими же, а затем и с другими часами. Такие эксперименты планируются нами в будущем.
Определенные трудности при этом связаны с их достаточно большой продолжительностью (порядка нескольких месяцев), причем в зависимости от конструкции часов и их состояния эффект может иметь различную длительность периода индукции. Если, последний продлится слишком долго, то это, можно принять за отсутствие эффекта.
К тому же возможна ситуация, когда силы действия данной пирамиды вообще не хватит для возникновения эффекта.
Что касается механизма воздействия на часы, то, на наш взгляд, возможны два варианта. Первый, более экзотический, - внутри пирамиды изменяется ход времени.
Второй - пирамида действует непосредственно на механизм часов.
Наличие стадий накопления и последействия, как нам кажется, свидетельствует скорее в пользу второго варианта. Однако если пойти дальше и попытаться понять, что именно и как могло бы изменяться в часах под действием пирамиды, то окажется, что такой вывод не очевиден.
Одно из предположений состоит в том, что воздействие осуществляется, через изменение упругих свойств пружины.
2. В следующем эксперименте мы попытались проверить, оказывает ли пирамида воздействие на упругие свойства пружин растяжения. Для этого использовался обыкновенный бытовой безмен, представляющий собой линейную пружину, помещенную в корпус с нанесенными на нем вдоль пружины делениями.
Такая шкала позволяет по растяжению пружины измерять вес прикрепленного груза.
Пирамида была та же, что и в эксперименте с часами. Время от времени безмен вынимали из пирамиды и на нем измеряли некоторый контрольный вес.
В нашем случае это был предмет весом в 1,5 кг, измеренный этим же безменом до начала эксперимента.
Сразу же после измерения безмен снова помещался в пирамиду. Результаты показаны на 2, где отложено изменение со временем (по дням) отличия (дельта) показаний безмена в ходе эксперимента от начального значения контрольного веса.
Стрелки около горизонтальной оси, направленные вверх, показывают начало периода нахождения безмена в пирамиде, а стрелки, направленные вниз, - его окончание.
Из этого рисунка мы видим, что во время пребывания в пирамиде показания безмена растут, то есть пружина растягивается. Как и в случае с часами, имеются стадии накопления эффекта.
Однако в данном случае измерения проводились значительно дольше, чем в случае с часами, и были доведены до стадии насыщения, когда величина дополнительного растяжения пружины переставала меняться, несмотря на то что безмен продолжал находиться в пирамиде.
После снятия пирамиды достигнутое в стадии насыщения дополнительное растяжение релаксировало к нулевому значению примерно за 10 дней. Затем эксперимент был проведен еще раз с тем же результатом.
Следует оговориться, что максимальная величина дополнительного растяжения, имевшего место в периоды нахождения безмена в пирамиде (см. 2), в наших экспериментах составляла не более чем три процента от исходного растяжения для контрольного груза.
Такие величины растяжений составляют лишь 20 процентов от минимального деления, имевшегося на безмене, что представляет достаточную трудность для непосредственного визуального фиксирования. Поэтому следует, конечно, перепроверить полученные результаты, используя более точный измеритель растяжений.
По этой причине мы пока относимся с известной осторожностью к полученным результатам.
Небольшой прямоугольный магнит 1,5 на 1,5 на 0,6 см помещался по оси пирамиды на пластиковую подставку высотой 5 см.
Ежедневно, один, два или три раза магнит вынимали из пирамиды и измеряли расстояние S, на котором, он начинал притягивать пробный металлический предмет - обыкновенную канцелярскую скрепку.
Перед началом измерений скрепка определенным образом (каждый раз одинаково) располагалась на одном и том же делении на деревянной линейке. Затем навстречу ей по линейке двигали магнит, также каждый раз ориентированный одинаковым образом.
С помощью делений линейки фиксировалось расстояние между магнитом и скрепкой, с которого, последняя начинала какое-либо движение.
Обычно делалась серия из 45 - 55 испытаний. Причем каждый раз скрепка несколько смещалась поперек линейки таким образом, чтобы линейка шесть раз прошлась туда и обратно в поперечном направлении.
Такая методика была использована для того, чтобы по возможности учесть влияние конкретных особенностей места расположения пробного предмета. Окончательный результат замера вычислялся как среднее арифметическое по проведенной серии.
Если в течение дня измерения выполнялись несколько раз, то бралась величина, равная сумме средних по каждой серии, деленной на число серий, проведенных в данный день (с 22.06.98 и до конца эксперимента делалось только по одной серии измерений в сутки).
Полученные данные представлялись в виде графика, по вертикальной оси которого откладывались указанные средние величины расстояния действия магнита S (в миллиметрах), а по горизонтальной - дни измерений.
Построенная таким образом зависимость оказалась сильноосциллирующей и трудной для воспроизведения. Поэтому на 3 мы лишь приблизительно показали линию, около которой происходят осцилляции.
Таким образом, она дает поведение некоторой средней по этим колебаниям величины расстояния S в различных фазах эксперимента.
Под горизонтальной осью стрелка, направленная вверх, показывает день, когда магнит помещался в пирамиду, а стрелка, направленная вниз, - день, когда пирамида убиралась. Эти операции всегда выполнялись после проведенного в данный день измерения.
Полученные результаты показывают, что имеется очевидная корреляция: среднее расстояние, на котором, магнит начинает двигать пробный предмет, нарастают до величины 13 - 13,5 миллиметров с ростом времени пребывания магнита в пирамиде. И, наоборот, уменьшаются до 11,5 - 12 миллиметров после того, как пирамида убиралась. Эти корреляции можно истолковать как наличие эффекта влияния данной пирамидальной конструкции;
его величина составляет 10-15 процентов. Из 3 следует, что эффект через определенное время достигает насыщения, то есть измеряемое расстояние перестает меняться.
В случае, когда магнит помещается в пирамиду, характерное время насыщения составляет порядка 15-20 дней, а в случае снятия пирамиды разрушение достигнутого состояния происходит значительно быстрее - за несколько дней.
Механизм эффекта, по-видимому, может состоять в том, что геометрия формы влияет на упорядоченность элементарных магнитных моментов.
4. Последняя серия экспериментов была призвана выявить, какое действие эффект формы оказывает на так называемые "биоэнергетические" свойства веществ. Дело в том, что, согласно одной из существующих (хотя и не всеми разделяемой) точек зрения, различные вещества могут нести некоторую информационную программу воздействия на человека.
Эта способность и называется биоэнергетикой.
Считается также, что биоэнергетика данного объекта может быть зафиксирована и измерена специально подготовленными людьми - операторами. Проведенные нами эксперименты ставились не для того, чтобы исследовать, насколько справедливы представления о биоэнергетических свойствах.
Их задачей являлось установить, будет ли зависеть результат измерений, выполняемых оператором, от того, находился ли объект в пирамиде или нет.
В наших экспериментах измерялись изменения "биоэнергетических" свойств обыкновенной водопроводной воды. Для этого использовался биолокационный эффект (БЛЭ), который был описан в разделе VI. 1.
В качестве параметра, характеризующего биоэнергетику образца воды, мы измеряли максимальное расстояние L (в метрах), на котором оператор еще "чувствовал" данный образец с помощью БЛЭ.