Как получать прибыль при неслучайных блужданиях 2


Анализ этих уравнений показывает, что вариант с различными ве­роятностями роста и падения цены, когда р ¹ q, качественно отличается от варианта совершенно случайных блужданий, когда р = q. Средняя при­быль равна нулю лишь тогда, когда р = q. Если р ¹ q, средняя прибыль отлична от нуля и, кроме того, вероятности выигрыша или проигрыша начинают зависеть не только от отношения L/S, но и от абсолютных величин L и S. Эти принципиальные моменты, важные для биржевой игры, необходимо рассмотреть подробнее.

Представьте, что вы купили акции по цене 100 долларов за штуку. Данные акции довольно активны, и их цена меняется в среднем на один доллар в день. Вы решаете, что акции могут вырасти до 104 долларов (L = 4), и ставите мысленный предел 104 доллара, когда вы их продадите с прибылью 4%. Для предотвращения больших потерь вы ставите «стоп» на 99 долларов (S = 1), и ваши максимальные потери будут 1 %. Какова вероятность выигрыша Р (L) и какова средняя ожидаемая прибыль G?

Ответ будет зависеть от вероятности р, т.е. от вероятности того, что акции вырастут в цене в течение одного дня. Если р = 0,5 (50% — «случайные блуждания»), то ответ на эти вопросы можно найти в начале данной главы: вероятность выигрыша P(L) = 20 % и средняя ожидаемая прибыль будет равна нулю. А что произойдет, если вероятность р будет равна 0,7 или 0,3? Результаты расчета приведены в таблице 5.2.

Вероятности выигрыша в обоих случаях меньше 60%, хотя средняя прибыль при р = 0,7 положительна и составляет 1,9 долларов, т. е. почти 2%. Это больше, чем средние потери от покупки акций с р = 0,3. Если бы вы купили акции двух компаний с р = 0,7 и с р = 0,3, вложив по 50 % капитала в каждую из них, то средняя прибыль от такого инвестирования составила бы (1,9 - 0,9)/2 = 0,5 % от начального капитала (деление на 2 возникло не из-за усреднения, а потому, что капитал был разделен между двумя компаниями).

Таблииа 5.2.

р

P(L)

P(S)

G

0,3

0,02

0,98

-0,9

0,7

0,58

0,42

1,9

Теперь рассмотрим другую важную задачу. Представьте, что вы занимаетесь трейдингом и ваш начальный капитал составляет 100 долла­ров. Вы покупаете и продаете акции различных компаний, среди которых равновероятно встречаются компании с р = 0,7 и р = 0,3. При этом все деньги, вырученные за продажу очередных акций, вы тратите на покупку следующих, ничего не добавляя и не откладывая. Можно ли получить прибыль при такой стратегии игры? Эта задача близка к методу выбора акций при помощи лука со стрелами, когда вероятности выбора «хо­роших» и «плохих» компаний практически одинаковы. В таком случае надежду можно возлагать лишь на то, что обрезание потерь «стопами» поможет быстро избавиться от плохих компаний и получить прибыль от хороших. Условия выберем прежние: «стоп» составляет 1 % от стоимости акций, и вы продаете акции, получив 4% прибыли.

Анализ данной задачи аналогичен тому, который был проведен в конце раздела 5.1. Коэффициент роста К вычисляется следующим образом:

К = 1,040,02/2 0,990,98/2 1,040,58/2 0,990,42/2 = 1,008,

т. е. он больше единицы, и средняя прибыль на один трейд составляет около 0,8% (коэффициенты ½ в показателях степени возникли из-за равной вероятности выбора компаний с р = 0,3 и р = 0,7). Через 10 трейдов начальный капитал увеличится в среднем в 1,00810 = 1,083 раз, или на 8%.