Моделирование в условиях противодействия, игровые модели



Как уже неоднократно отмечалось, системный анализ невозможен без учета взаимодействий данной системы с внешней средой. Ранее упоминалась необходимость учитывать состояния природы — большей частью случайных, стохастических воздействий на систему.
Конечно, природа не мешает (но и не помогает) процессам системы осознанно, злонамеренно или, наоборот, поощряюще. Поэтому учет внешних природных воздействий можно рассматривать как "игру с природой", но в этой игре природа — не противник, не оппонент, у нее нет цели существования вообще, а тем более — цели противодействия нашей системе.
Совершенно иначе обстоит дело при учете взаимодействий данной системы с другими, аналогичными или близкими по целям своего функционирования. Как известно, такое взаимодействие называют конкуренцией и ситуации жизни больших систем-монополистов крайне редки, да и не вызывают особого интереса с позиций теории систем и системного анализа.
Особый раздел науки — теория игр позволяет хотя бы частично разрешать затруднения, возникающие при системном анализе в условиях противодействия. Интересно отметить, что одна из первых монографий по этим вопросам называлась "Теория игр и экономического поведения" (авторы — Нейман и Моргенштерн, 1953 г., имеется перевод) и послужила своеобразным катализатором развития методов линейного программирования и теории статистических решений.
В качестве простого примера использования методов теории игр в экономике рассмотрим следующую задачу.
Пусть вы имеете всего три варианта стратегий в условиях конкуренции S1,S2 и S3 (например — выпускать в течение месяца один из 3 видов продукции). При этом ваш конкурент имеет всего два варианта стратегий C1 и C2 (выпускать один из 2 видов своей продукции, в каком то смысле заменяющей продукцию вашей фирмы). При этом менять вид продукции в течение месяца невозможно ни вам, ни вашему конкуренту.
Пусть и вам, и вашему конкуренту достоверно известны последствия каждого из собственных вариантов поведения, описываемые следующей таблицей.

Таблица 3.6

C1
C2
S1
-2000
+ 2000
S2
-1000
+3000
S3
+1000
+2000


Цифры в таблице означают следующее:

· вы несете убытки в 2000 гривен, а конкурент имеет ту же сумму прибыли, если вы приняли стратегию S1, а конкурент применил C1;

· вы имеете прибыль в 2000 гривен, а конкурент теряет ту же сумму, если вы приняли S1 против C2;

· вы несете убытки в сумме 1000 гривен, а конкурент получает такую прибыль, если ваш вариант S2 оказался против его варианта C1 , и так далее.

Предполагается, что обе стороны имеют профессиональную подготовку в области ТССА и действуют разумно, соблюдая правила — вариант поведения принимают один раз на весь месяц, не зная, конечно, что предпринял на этот же месяц конкурент.
По сути дела, в чисто житейском смысле — это обычная "азартная" игра, в которой существует конечный результат, цель игры — выигрыш.
Этой цели добивается каждый игрок, но не каждый может ее добиться. Варианты поведения игроков можно считать ходами, а множество ходов — рассматривать как партию.
Пусть партия состоит всего лишь из одного хода с каждой стороны. Попробуем найти этот наилучший ход сначала для вашего конкурента — порассуждаем за него.
Так как таблица известна как вам, так и конкуренту, то его рассуждения можно промоделировать.
Вашему конкуренту вариант C2 явно невыгоден — при любом вашем ходе вы будете в выигрыше, а конкурент в проигрыше. Следовательно, со стороны вашего противника будет, скорее всего, принят вариант C1, доставляющий ему минимум потерь.
Теперь можно порассуждать за себя. Вроде бы вариант S2 принесет нам максимальный выигрыш в 3000 гривен, но это при условии выбора C2 вашим конкурентом, а он, скорее всего, выберет C1.
Значит наилучшее, что мы можем предпринять — выбрать вариант S3, рассчитывая на наименьший из возможных выигрышей — в 1000 гривен.