Подпись: шаг адаптации в адаптивном авторегрессионном алгоритме; действительный весовой множитель в рекурсивном алгоритме наименьших квадратов; количество главных собственных векторов, отвечающих подпространству сигнала в методе, основанном на собственных значениях; тип окна в классических методах спектрального анализа). 

Сохранение «достоверности» формы спектра - одно из свойств, которое присуще практически всем исследованным методам. Однако меру «достоверности» сложно определить аналитически и затем количественно для каждого из методов, поэтому «достоверность» относится к числу субъективных критериев качества получаемых оценок и основным подходом к сравнению алгоритмов является визуальное сравнение получаемых оценок с истинным априорно известным спектром тест-сигнала. Результаты сравнения полученных каждым из исследованных методов оценок приведены в приложении C.

Максимально допустимое разрешение оценки СПМ для всех рассмотренных методов приведены в приложении D. Как и следовало ожидать наилучшими в смысле спектрального разрешения являются альтернативные неклассические методы. Основной недостаток классических методов заключается в искажающем воздействии какого бы то ни было взвешивающего окна. А псевдоусреднение по ансамблю за счет сегментации данных приводит к еще более худшему разрешению (приложение D график N). От этого недостатка свободны все остальные взятые в рассмотрение методы. Однако в случае авторегрессионных методов увеличение порядка модели наряду с улучшением разрешающей способности приводит к эффекту появления ложного спектрального пика или к расщеплению спектральной линии (что продемонстрировано на графике N приложения D). Оценки по методу минимума дисперсии и оценки, полученные авторегрессионными методам, связаны некоторыми соотношениями, поэтому эти же эффекты присутствуют и в МД-оценках. В случае алгоритмов, основанных на сингулярном разложении матрицы данных, значительные ложные пики также имеют место при увеличении порядка модели. 

Практически все методы позволяют экспериментально обнаружить слабые синусоидальные составляющие. В таблице приложения Е приведены максимально допустимое 
спектральный анализПодпись:

Экспериментальный анализ алгоритмов спектрального анализа 2






спектральный анализспектральный анализПодпись: Начало Дальше